
www.manaraa.com

Research Article
Modelling the Embedded Control System Using iUML-B
Pattern State Machine

Han Peng ,1 Chenglie Du,1 Lei Rao,2 and Zhouzhou Liu1

1School of Computer Science, Northwestern Polytechnical University, Xi’an, China
2School of Software and Microelectronics, Northwestern Polytechnical University, Xi’an, China

Correspondence should be addressed to Han Peng; hansbeng2016@gmail.com

Received 15 November 2017; Revised 16 April 2018; Accepted 10 May 2018; Published 12 June 2018

Academic Editor: Carlos-Andrés Garćıa

Copyright © 2018 Han Peng et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Developing the formal model based on the Event-B design pattern is an excellent method to improve the development efficiency
of the embedded control system and improve the reusability of the formal model. However, the instantiation of the Event-B design
pattern requires the manual writing of a large number of model codes, which brings a great deal of learning cost and coding burden
to the engineering staff. In this paper, we propose a modelling approach for formal development of control systems based on the
application of iUML-B statemachine patterns tomodel the four synchronization patterns of the typical control system.Then, we use
the instantiation of iUML-B pattern state machine to establish a typical multilevel control system's Event-B model. The simulation
results show that the event trace of the model obtained using our method is the same as that of the corresponding model obtained
using the traditional Event-B design pattern. Comparedwith the traditional Event-B design patternmethod, ourmethod can greatly
reduce the manual coding burden in the modelling process. The system model expressed using the iUML-B pattern state machine
can be easily mapped to the labelled transition system so as to verify the behavioural properties of the model.

1. Introduction

The embedded control system has been widely used in
aviation, aerospace, Internet of things, and cyber-physical
system. Due to the complexity of the embedded control
system, it is difficult to ensure its safety properties through
test and simulation.Therefore, in a variety of safety standards,
such as DO-178C [1] and IEC 61508 [2], it has been clearly
stated that engineer must use formal methods to model and
verify the embedded system.

Event-B [3] is a formal modelling language based on set
theory and first order logic which is supported by a modern
tool and built-in provers. There are a lot of successful cases
of Event-B application including aircraft landing gear control
system [4] and satellite communication system [5].

To improve the reusability of the Event-B model, the
researchers proposed the concept of Event-B design patterns
[6]. Unlike the software design pattern, the Event-B design
pattern is a formal design pattern.The goal of Event-B design
patterns is to instantiate some small formal models that have

been proven to be correct into actual system models and use
these small formal models to construct a larger formal model
bymodel composition.Thismethodnot only avoids “reinvent
the wheel” but also avoids repetitive refinement and proof.

However, according to our experience, one has to add
a lot of guards and actions manually if he (she) wants to
model the synchronization control flow of control-intensive
system using Event-B. It is a heavy work for the modeller.
Engineers need an intuitive, simple way to understand and
model synchronous control flow patterns.

Themain contribution of this paper is to show how to use
iUML-B pattern state machine to model the synchronization
patterns of the control-intensive embedded system and apply
it to the Event-B model of the embedded control system. We
proposed the concept of iUML-B pattern state machine and
developed the pattern state machines of four synchroniza-
tion patterns (strong synchronization, weak synchronization,
strong-strong synchronization, and strong-weak synchro-
nization) for the control-intensive embedded system. Then
we establish a formal model of a typical embedded control

Hindawi
Journal of Control Science and Engineering
Volume 2018, Article ID 1468172, 12 pages
https://doi.org/10.1155/2018/1468172

http://orcid.org/0000-0001-8400-4663
https://doi.org/10.1155/2018/1468172

www.manaraa.com

2 Journal of Control Science and Engineering

system by instantiating these four pattern statemachines.The
experimental results show that, using our proposed method,
the modeller can establish a model of the control-intensive
embedded system easily according to some simple rules.

The remainder of this paper is organized as follows:
Section 2 describes the related works of the Event-B design
pattern. Section 3 introduces the basic knowledge of Event-
B and its design patterns and iUML-B state machines.
Section 4 uses the iUML-Bpattern statemachine tomodel the
synchronization patterns of the embedded control system.
In Section 5, we instantiated iUML-B pattern state machines
into the Event-B model of the embedded control system. In
Section 6, we present an evaluation of our approach. Section 7
summarizes the work of this paper and looks ahead to future
work.

2. Related Work

Event-B design pattern has been widely used in many fields.
Renato Silva [7, 8] proposed the design pattern and the
“Generic Instantiation” approach and uses this technology
to develop the Event-B model of a safety critical subway
system. In the instantiation process of the design pattern, the
“Generic Instantiation”method canuse the renameplug-in to
instantiate the design pattern, thus avoiding a lot of repetitive
developments and proofs.

Abrial [3] proposed four synchronization patterns of
embedded control system: strong synchronization, weak
synchronization, strong-weak synchronization, and strong-
strong synchronization pattern. Its main purpose is to model
the “actuator-reactor” patterns of the reactive system. Abrial
modelled a mechanical press controller model using these
four synchronization patterns. We will introduce these pat-
terns in detail in Section 4. Synchronization pattern is a
template for control-intensive embedded systems. It makes
modelling of multilayer control systems easy. The modeller
needs to instantiate the patterns into the specific model and
then composes them together to get a complex multilevel
control system model.

Sanz Yeganefard [9] applied the monitored, controlled,
mode, and commanded (MCMC) method to the control
system and proposed four patterns, namely, the monitor
pattern, control pattern, mode pattern, and command pat-
tern, expressed by Event-B. Sanaz Yeganefard developed
the Event-B model of the cruise control system [10], the
automotive lane departure warning system [11], and the lane
centering controller [12] using the four above-mentioned
patterns. In the work of Sanaz Yeganefard, the composition
of patterns is proposed to compose the simple patterns
into a composition pattern. But the composition of patterns
requires tool support. MCMC patterns can be considered
as an extended “actuator-reactor” pattern because they add
status monitoring to the “actuator-reactor” pattern to form a
feedback loop. This is very useful for the development of the
formal model of self-adaptive systems.

In addition to the typical Event-B design patterns
described above, Ali Gondal [13] proposed some Event-
B refinement patterns and decomposition/composition pat-
terns to model the product line of feature-oriented control

systems. Adisak Intana [14] proposed some Event-B refine-
ment and composition patterns to model wireless sensor
networks.

To the best of our knowledge, there is no literature
on using iUML-B state machine to model the Event-B
synchronous control flow patterns.

3. Preliminaries

3.1. Event-B Model. An Event-B model consists of two parts,
machine and context. Context describes the static part of
the system, including carrier sets, constants, axioms, and
theorems. A machine uses variables and events to describe
the changes of the system.The process of developing a system
model with Event-B usually begins with an abstract model
and then continues to refine themodel until it approaches the
implementation. In the process of machine refinement, new
events and variables can be added step by step. The current
development tool for Event-B is the mature Rodin platform
[15].

In Event-B, an event is made up of the guards and actions
parts. An event can usually be expressed as

e Š WHEN guards THEN actions END

When the guards of an event are all satisfied, the event can
be triggered and the expression in actions parts describes the
change of state variables when an event occurs.

3.2. iUML-B State Machine and Its Event Link Function.
Snook and Butler invented a “UML-like” Event-B graphical
front end, called UML-B [16]. UML-B uses the class diagrams
and state diagrams familiar to the software engineers and
system engineers to model the system requirements. System
model expressed by UML-B can generate the corresponding
Event-B machine directly on the Rodin platform. Recently,
UML-B has evolved into iUML-B (integratedUML-B), which
allows UML-B class diagrams and state diagrams to be
embedded directly into an Event-B machine. iUML-B has
been successfully applied to some large projects in Europe
commission, such as [17–19].

The graphical symbol of the iUML-B state machine is
similar to the state diagram of the UML, and we need not
explain it.What we are interested in is a very powerful feature
of the iUML-B state machine; that is, the transition edges
in iUML-B state machine can be “linked” with the existing
events in the Event-B model to control the order of these
events. For example, suppose that we have already written
four events: INITIALISATION, a on, a off, and b on. If we
want to control the order of these events like “after the a on
event has occurred, the b on eventmust occur before the a off
event (Req 1),” then we can create an iUML-B state machine
and “link” these four events to the transition edges of the state
machine, as shown in Figure 1. The italic codes in Figure 1
are the codes automatically generated by the iUML-B state
machine to control the event order.

We use the definition of “event trace” proposed by Butler
[20] to describe the order of events in the Event-B model:
“event trace represents a record of a possible execution trace

www.manaraa.com

Journal of Control Science and Engineering 3

b_on Š
WHEN
m=m1
…
THEN
act1 :m=m0
...
END

a_off Š
WHEN
m=m0
…
THEN
act1 :...
END

INITIALISATION Š
THEN
act1 :m=m0
…
END

a_on Š
WHEN
m=m0
… … .
THEN
act1 :m=m1
… …
END

Link

Link Link

Link

Generate

Generate

Generate Generate

Figure 1: iUML-B state machine of Req 1.

of the model,” and we use ‘∗’ to indicate an event that may
occur 0 or more times. An event trace is usually represented
by a set of events between “⟨” and “⟩.” For example, ⟨𝑒1, 𝑒2⟩∗
indicates that the 𝑒2 event must be executed after the 𝑒1 event
occurs, and this event sequence will be repeated indefinitely.

3.3. Event-B Design Pattern and Its Instantiation. The idea
of the Event-B design pattern is to construct and prove
the formal models of the relatively small problems in order
to reuse these small formal models to construct the larger
model. As with the design pattern in software engineering,
the Event-B design pattern is an abstract model of a class of
problems. For example, the classic “trigger-response” pattern
can be expressed in a nonformalized language: “once the
trigger event a on occurs, then the response event r onwill be
enabled.” Its corresponding Event-B design pattern is shown
in Figure 2(a) (we named itP1). Suppose that when the system
is initialized, the values of a and r are a0 and r0, respectively.
Then r on event will be enabled after the a on event occurs
because the a on event causes the value of variable a to change
from a0 to a1, which makes all the guards of r on become
TRUE.

We can express the “trigger-response” relationship in
the specific control system by instantiating the pattern P1.
For example, in an actual mechanical control system, there
is a relationship between a motor controller button and a
motor indicator light: “when the motor controller button
is pressed, the motor indicator light must be illuminated.”
This relationship is an instance of the P1 pattern. To get this
instance, we just need to rename the variables, constants,
and event names of the pattern P1 according to renaming
rules in Figure 2(b). The resulting Event-B model is shown
in Figure 2(c) (we named it I1).

In this way, the modeller does not have to prove the
correctness of I1 again if he has proven the correctness of P1.
In other words, by using the Event-B design pattern, we can
reuse not only the design strategy of the model but also the
correctness of the model. Therefore, the direct benefit of the
Event-B design pattern is that it can greatly reduce proof cost
of the formal model.

4. Modelling Synchronous Patterns of the
Embedded Control System

In this section, we use the iUML-B pattern state machine to
model four typical synchronization patterns in the embed-
ded control system, namely, strong synchronization pattern,
weak synchronization pattern, strong-weak synchronization
pattern, and strong-strong synchronization pattern. First,
we explained in detail four synchronization patterns, which
were proposed by Abrial in his book [3]. Then we modelled
these four synchronization patterns with the iUML-B state
machine.

We verify the correctness of our pattern state machine
in three steps. First, we compare the Event-B code generated
by our pattern state machine and that of the corresponding
pattern proposed by Abrial (http://deploy-eprints.ecs.soton
.ac.uk/113/3/ch3 pattern.zip). Then we use their correspond-
ing labelled transitions system model to prove that they are
equivalent in behaviour. Finally, we compared the event trace
of our model with that of Abrial’s Event-B model using the
Rodin platform. Simulation results show that the event traces
of them are identical.

4.1. Synchronization Requirements of Control System. In the
embedded control system, the “trigger-response” problem is
the simplest andmost basicmodel. In thismodel, the actuator
executes an “action” event and sends an instruction to the
reactor.The reactor receives the instruction after the “action”
event and executes the “reaction” event, as shown in Figure 3.

In this paper, we follow the following naming convention.
The variables 𝑎 and 𝑏 represent the state changes of the

actuators 𝑎 and 𝑏, respectively.The variables 𝑟 and 𝑠 represent
the state changes of the reactors 𝑟 and 𝑠, respectively. The
event X on changes the value of the variable 𝑋 from 0 to 1,
where 𝑋 ∈ {𝑎, 𝑏, 𝑟, 𝑠}. The event X off changes the value of
the variable𝑋 from 1 to 0, where𝑋 ∈ {𝑎, 𝑏, 𝑟, 𝑠}.

In addition, we refer to an “actuator-reactor” combina-
tion as a “subsystem.” For instance, actuator 𝑎 and reactor𝑟 compose a subsystem. We use “uninterruptible trace” to
indicate an event trace that cannot be inserted in any other
events. For example, if we require ⟨𝑒1, 𝑒2, 𝑒3⟩ to be an
uninterruptible trace, then event trace ⟨𝑒1, 𝑒2, 𝑒4, 𝑒3⟩ is an
illegal trace that deviated from our requirement.

(1) Strong Synchronization Requirement. A strong synchro-
nization requirement means that once the actuator performs
an action, the reactor must respond to it; otherwise, the
actuator will not execute any further action. Figure 4 shows
this strong synchronization relationship; that is, after a on
occurs, r on must be executed; otherwise, the actuator will
wait forever. Similarly, after a off occurs, r off must be

http://deploy-eprints.ecs.soton.ac.uk/113/3/ch3_pattern.zip
http://deploy-eprints.ecs.soton.ac.uk/113/3/ch3_pattern.zip

www.manaraa.com

4 Journal of Control Science and Engineering

a_on Š
STATUS
ordinary
WHEN
@isin_a0 : a = a0
THEN
@enter_a1 : a fl a1
r_on Š
STATUS
ordinary
WHEN
@isin_a1 : a = a1
@isin_r0 : r = r0
THEN
@enter_r1 : r fl r1

(a) Event-B pattern

a motor_button
Variables

r motor_light

Constants

a0
pusheda1
released

a0 off
r1 on

Events
a_on push_start_motor_button

r_on light_up

Renaming

(b) Renaming rules

push_start_motor_button Š
STATUS
ordinary
WHEN
@grd1 : motor_button= released
THEN
@act1 : motor_buttonfl pushed
light_up Š
STATUS
ordinary
WHEN
@grd1 : motor_button= pushed
@grd2 : motor_light = off
THEN
@act1 : motor_light fl on

(c) Instance of the pattern

Figure 2: Instantiation process of Event-B design pattern.

actuator reactor
action

reaction

Figure 3: Actuator-reactor pattern.

1

0

a r

Figure 4: Strong synchronization requirement.

1

0
a

r
(a)

0

1

a

r
(b)

Figure 5: Weak synchronization requirement.

executed.Therefore, the event trace of strong synchronization
requirement is ⟨𝑎 𝑜𝑛, 𝑟 𝑜𝑛, 𝑎 𝑜𝑓𝑓, 𝑟 𝑜𝑓𝑓⟩ ∗.
(2) Weak Synchronization Requirement. The weak synchro-
nization requirement means that after the actuator executed
an action, the reactormay either respond to it or not respond.
Thus, the behaviours of the actuator and the responder under
theweak synchronization constraint will be the same as in the
case of Figure 5. In Figure 5(a), the actuator performs a on
and a off events multiple times and the reactor is always in
the state r = 0. Figure 5(b) shows the case where the reactor
is always in the r = 1 state.

(3) Strong-Strong Synchronization Requirement. Strong-
strong synchronization requirement is the synchronization
requirement between two subsystems. Assume that subsys-
tem 1 comprises an actuator a and a reactor r and subsystem
2 comprises an actuator b and a reactor s.

The strong-strong synchronization requirement indicates
that subsystem 1 and subsystem 2 are strongly synchronous;
that is, the b on event must occur after the r on event of

subsystem 1; otherwise subsystem 1 will wait forever. At the
same time, after the s off event has occurred in subsystem
2, subsystem 1 must execute a off events. This is shown
in Figure 6 (Abrial did not give the graphical presentation
of strong-strong synchronization patterns in his book [3].
We obtain the graphical representation of the strong-strong
synchronization shown in Figure 5 based on the Event-B code
of strong-strong synchronous pattern given by Abrial and
Figure 3.35 on page 147 in Abrial’s book [3]). The event trace
of strong-strong synchronization requirement is unique, that
is, ⟨𝑎 𝑜𝑛, 𝑟 𝑜𝑛, 𝑏 𝑜𝑛, 𝑠 𝑜𝑛, 𝑏 𝑜𝑓𝑓, 𝑠 𝑜𝑓𝑓, 𝑎 𝑜𝑓𝑓, 𝑟 𝑜𝑓𝑓⟩∗.
(4) Strong-Weak Synchronization Requirement. Strong-weak
synchronization requirement refers to weak synchronization
relationship between subsystem 1 and subsystem 2. Specif-
ically, there are two cases. The first case is that after the
r on event occurs in subsystem 1, the subsequent event
may be either b on event in subsystem 2 or a off event
in subsystem 1. The former indicates that subsystem 2
responds to the event of subsystem 1 and enters into an unin-
terruptible event trace ⟨𝑏 𝑜𝑛, 𝑠 𝑜𝑛, 𝑏 𝑜𝑓𝑓, 𝑠 𝑜𝑓𝑓⟩; the latter

www.manaraa.com

Journal of Control Science and Engineering 5

1

0

a r

1

0
b s

Figure 6: Strong-strong synchronization requirement.

a
r

b
s

Subsystem1

Subsystem2

(a)

a
r

b
s

Subsystem1

Subsystem2

(b)

Figure 7: Strong-weak synchronization requirement.

state machine of actuator state machine of reactor

Event-B code of synchronization pattern

generate code generate code

composition of state machines

Figure 8: The principle of modelling.

(a) State machine a (b) State machine r

Figure 9: The iUML-B state machines of the weak synchronization pattern.

means that subsystem 2 does not respond to the event
of subsystem 1, so subsystem 1 enters its uninterruptible
event trace ⟨𝑎 𝑜𝑓𝑓, 𝑟 𝑜𝑓𝑓, 𝑎 𝑜𝑛, 𝑟 𝑜𝑛⟩.The principle of strong-
weak synchronization is shown in Figure 7(a) (based on
the same reason as Section 4.1 (3), we obtain a graphical
representation of the strong-weak synchronization pattern
according to Figure 3.19 on page 129 in Abrial’s book [3]).
The second case is that after the s off event in subsystem
2 occurs, subsystem 1 may either execute event a off to
respond to it or may not respond, which will cause subsystem
2 to execute the b on event and return to its uninter-
ruptible trace ⟨𝑏 𝑜𝑛, 𝑠 𝑜𝑛, 𝑏 𝑜𝑓𝑓, 𝑠 𝑜𝑓𝑓⟩. This is shown in
Figure 7(b).

4.2. Modelling the System Synchronization Pattern with the
iUML-B State Machine. In this section, we use iUML-B
state machine to model these synchronization patterns. The

principle of our approach is to model the actuators and
reactors in each design pattern (e.g., the actuators 𝑎 and 𝑏 and
the reactors 𝑟 and 𝑠) as an iUML-B statemachine, respectively.
Event-B code generated by these state machines is embedded
in a single Event-B machine. The resulting Event-B machine
is the model for various synchronous control flow patterns.
The essence of this procedure is the combination of the state
machine of the actuator and the state machine of the reactor,
as shown in Figure 8.

(1) Modelling the Weak Synchronization Pattern. According
to weak synchronization requirement, r on must occur after
a on. Therefore, we first draw the state machines for 𝑎 and𝑟 themselves; then we add a reflexive edge on its state a1 and
“link” this edge to event r on.Thenwe can add a reflexive edge
on its state a0 and “link” this edge to event r off, as shown in
Figure 9.

www.manaraa.com

6 Journal of Control Science and Engineering

The Event-B codes automatically generated according to
iUML-B state machines in Figure 9 are

a_on Š
STATUS
ordinary
WHEN
@isin_a0 : a = a0
THEN
@enter_a1 : a fl a1

a_off Š
STATUS
ordinary
WHEN
@isin_a1 : a = a1
THEN
@enter_a0 : a fl a0

r_on Š
STATUS
ordinary
WHEN
@isin_a1 : a = a1
@isin_r0 : r = r0
THEN
@enter_r1 : r fl r1

r_off Š
STATUS
ordinary
WHEN
@isin_a0 : a = a0
@isin_r1 : r=r1
THEN
@enter_r0 : r fl r0

We named it Weak𝑖𝑈𝑀𝐿𝐵. To prove that Weak𝑖𝑈𝑀𝐿𝐵 satis-
fies weak synchronization requirement, we give the Event-B
code of weak synchronization proposed by Abrial:

a_on Š
STATUS
Ordinary
WHEN
@guard1:a = 0

THEN
@action1:a fl 1

END

r_off Š
STATUS
Ordinary
WHEN
@guard1:a=0
@guard2:r =1

THEN
@action1:r fl 0

END

r_on Š
STATUS
Ordinary
WHEN
@guard1:a=1
@guard2:r= 0

THEN
@action1:r fl 1

END

a_off Š
STATUS
Ordinary
WHEN
@guard1:a = 1

THEN
@action1:a fl 0

END

We named Abrial’s weak synchronization model as
Weak𝐸𝑣𝑒𝑛𝑡𝐵. It is easy to see that the only difference between
Weak𝑖𝑈𝑀𝐿𝐵 and Weak𝐸𝑣𝑒𝑛𝑡𝐵 is the value of variables a and r.
According to the algorithmgiven in literature [21], we convert
both models to labelled transitions system (LTS) and get two
identical LTSs, as shown in Figure 10.

If we only concern the behaviour of the model, that is, the
event trace, we can conclude thatWeak𝑖𝑈𝑀𝐿𝐵 andWeak𝐸𝑣𝑒𝑛𝑡𝐵
are equivalent.

In order to confirm the above verification results, we
simulated the event traces of Weak𝑖𝑈𝑀𝐿𝐵 and Weak𝐸𝑣𝑒𝑛𝑡𝐵
with the aid of the Rodin platform and found that they
are identical. Due to space limitations, in the following
discussion, we will no longer give the equivalence proof of
the other three synchronization patterns.

(2) Modelling the Strong Synchronization Pattern. According
to the requirement of strong synchronization pattern, we
modify the state machine of the reactor on the basis of the
weak synchronization pattern and add two reflexive edges
a on and a off on the r = r0 state and r = r1 state, respectively,
as shown in Figure 11.

(3) Modelling the Strong-Weak Synchronization Pattern. We
model the strong-weak synchronization pattern using iUML-
B state machines as shown in the four subgraphs (a), (b), (c),
and (d) in Figure 12. It should be noted that the strong-weak
synchronization pattern is the synchronization between the

two subsystems, soweneed to addmore reflexive edge to limit
the event order between the subsystems.

(4) Modelling the Strong-Strong Synchronization Pattern. The
strong-strong synchronization pattern adds more constraints
on the basis of strong-weak synchronization pattern. We
added a new auxiliary state machine m to impose these
constraints, as shown in Figure 13. We use dotted arrows
to point to the Event-B code generated by each edge in the
state machine m. It can be seen that the Event-B codes that
generated by state machine m in Figure 13 constrained that
event b onmust occur between a on and a off event.

As we have analyzed in Section 4.1 (4), in the strong-
weak synchronization pattern, after the event sequence⟨𝑎 𝑜𝑛, 𝑟 𝑜𝑛⟩ occurs, both of a off event and a b on event
are enabled. However, after adding a constraint variable
m on the strong-weak synchronization pattern, a off can
be enabled only when a = a1 and m = m0. Therefore,
in the Event-B model generated by the strong-strong syn-
chronous pattern state machines, after the event sequence<a on, r on> occurs, the enabled event can only be b on.
Furthermore, as long as b on occurs, the system will go
into an uninterruptible event trace ⟨𝑏 𝑜𝑛, 𝑠 𝑜𝑛, 𝑏 𝑜𝑓𝑓, 𝑠 𝑜𝑓𝑓⟩.
Thus, the event trace of this Event-B model can only be⟨𝑎 𝑜𝑛, 𝑟 𝑜𝑛, 𝑏 𝑜𝑛, 𝑠 𝑜𝑛, 𝑏 𝑜𝑓𝑓, 𝑠 𝑜𝑓𝑓, 𝑎 𝑜𝑓𝑓, 𝑟 𝑜𝑓𝑓⟩. That is, the
strong-weak synchronization pattern state machine becomes
the strong-strong synchronization pattern statemachine after
adding a new state machinem, as shown in Figure 13.

www.manaraa.com

Journal of Control Science and Engineering 7

Figure 10: LTS model of weak synchronization pattern.

(a) State machine a (b) State machine r

Figure 11: The iUML-B state machines of the strong synchronization pattern.

(a) State machine a (b) State machine r

(c) State machine b (d) State machine s

Figure 12: The iUML-B state machines of strong-weak synchronization pattern.

5. Modelling the Embedded Control System
with Pattern State Machine Instantiation

In this section, we instantiate four synchronous pattern
state machines and use these instances to build an Event-B
model of an embedded control system. In order to prove the
simplicity of our method and to compare it with the Event-
B design pattern, we used the case of Abrial’s mechanical
press controller system in chapter 3 of literature [3]. In the
remainder of this paper, we refer to this mechanical press
controller system as the “Press” system.

5.1. System Overview. The principle of Press system is shown
in Figure 14(a). The system consists of control parts and
controlled parts. The controlled parts are Motor, Clutch,
and Door. The control parts are four control buttons. The
control buttons B1 and B2 control the start and stop ofmotor,
respectively, and B3 and B4, respectively, control the engage
and disengage of the Clutch. When the Motor is working,
as long as Clutch is engaged, the Motor will drive rod; thus
slide is driven up and down. Then the tool below the slide
will complete the processing of part. The Door is to ensure
the safety of the staff; that is, when theMotor is working and

www.manaraa.com

8 Journal of Control Science and Engineering

a_on Š
STATUS
Ordinary
WHEN
@guard1:r =r0
@guard2:a = a0
@guard3:m= m0
THEN
@action1:a fl a1
@action2:mfl m1
END

a_off Š
STATUS
Ordinary
WHEN
@guard1:r = r1
@guard2:a = a1
@guard3:s = s0
@guard4:b = b0
@guard5:m = m0
THEN
@action1:a fl a0
END

b_on Š
STATUS
Ordinary
WHEN
@guard1:s = s0
@guard2:b = b0
@guard3:r= r1
@guard4:a= a1
@guard5:m=m1
THEN
@action1:b fl b1
@action2:mfl m0
END

Figure 13: The iUML-B state machine𝑚 and the Event-B codes it generated.

MOTOR

ROD

SLIDE

TOOL

PART

B1 B2 B3 B4
BUTTONS

TOOTDOOR

Motor
buttons

Clutch
buttons

(a)

CLUTCH MOTOR

DOOR

Strong

Strong

Strong

Weak Weak

Motor_button Clutch_button

Start Stop Start Stop

Sub5

Sub1 Sub2

Sub7

Sub6

Sub3 Sub4

strong-weakstrong-strong

CONTROLLER

strong-weak

(b)

Figure 14: Mechanical press controller system.

the Clutch is engaged, the Doormust be closed. Likewise, the
Door can be opened only after the Clutch is disengaged.Door
object is indirectly controlled by B3 and B4.

The synchronization relationships of Press system are
shown in Figure 14(b).The relationships between four buttons
and the controller are weak synchronization.That is, pressing
a control button (e.g., B1) does not guarantee that the
corresponding controlled object will respond to it (e.g., the
Motor is started). This is because a button may be pressed
several times in an instant. But the controlled object can
just respond to one of them. The relationship between the
controller and the Clutch (the Motor, the Door) is a strong
synchronization.

In addition, there are strong-weak synchronization or
strong-strong synchronization relationships between subsys-
tems, as shown in Figure 14(b).The strong-strong synchro-
nization relationship between subsystems Sub5 and Sub7
means that, first, the Clutch can be engaged only when the
Motor is working; at the same time, theMotor can be stopped
only after the Clutch is disengaged; second, the Motor can
be stopped and started more than once before the Clutch is
engaged; similarly, theClutch can be engaged and disengaged
multiple times before theMotor is stopped.The strong-strong
synchronization relationship between subsystems Sub6 and
Sub7 is a safety requirement to ensure the safety of the oper-
ator. The strong-weak synchronization between subsystems

www.manaraa.com

Journal of Control Science and Engineering 9

(a) State machine start motor button

(b) State machine start motor impulse

Figure 15: Sub1’s instance state machine.

Sub5 and Sub6 is similar to the relationship between Sub5 and
Sub7.

5.2. System Modelling Process. Based on the analysis of the
synchronization requirements in Section 4.1, we instantiate
the four synchronous pattern state machines of iUML-B into
the model of the mechanical press controller system. The
instantiation of the Event-B design pattern is a renaming
process for the variable names, constant names, and the event
names of a pattern. We give only examples of instantiation of
subsystem 1 (weak synchronization pattern) and subsystem
5-subsystem 7 (strong-weak synchronization pattern); the
other subsystems can be instantiated in the same way as these
two examples.

(1) Instantiation of theWeak Synchronization Pattern. Accord-
ing to the renaming relation, we get the two instance
statemachines start motor button and start motor impulse of
Sub1, as shown in Figures 15(a) and 15(b), respectively.

(2) Instantiation of Strong-Weak Synchronization Patterns.
Strong-weak synchronization pattern is the relationship
between subsystems, which ismore complex than the internal
synchronization of subsystems because they contain the
synchronization relationships inside each subsystem and the
synchronization relationships between subsystems. Without
the help of design pattern, this development will be a painful
process. Here, we can get the iUML-B state machines of Sub5
and Sub7 just by instantiating the strong-weak synchroniza-
tion pattern state machines into the instance state machines.
We can get four instance state machines of Sub5 and Sub7,
namely, motor actuator, motor sensor, clutch actuator, and
clutch sensor, as shown in Figure 16.

(3) Composition of Instance State Machines. To facilitate
comparison with traditional design methods, we followed
the same refinement approach that has been described by
Abrial [3]. We get the iUML-B state machines of Sub1 to
Sub7 through the instantiation of the pattern state machines
and modelled the various synchronization relations between
them. The final model of the system consists of 15 iUML-
B state machines, of which 14 state machines are shown in
Table 1. The 15th state machine is an auxiliary state machine
named m s6 s7, which is used to model the strong-strong

(a) State machine motor actuator

(b) State machine motor sensor

(c) State machine clutch actuator

(d) State machine clutch sensor

Figure 16: Instance state machines of Sub5 and Sub7.

synchronization relationship between Sub6 and Sub7. It is an
instance of the state machinem shown in Figure 13.

As we said at the beginning of Section 4.2, the state
machine for each subsystem is actually a composed state
machine for two state machines within the subsystem. For
example, if we use “⊗” to express the composition of state
machines, then we have

𝑆𝑡𝑎𝑡𝑒𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠𝑢𝑏1
= (𝑠𝑡𝑎𝑟𝑡 𝑚𝑜𝑡𝑜𝑟 𝑏𝑢𝑡𝑡𝑜𝑛 ⊗ 𝑠𝑡𝑎𝑟𝑡 𝑚𝑜𝑡𝑜𝑟 𝑖𝑚𝑢𝑙𝑠𝑒) (1)

We can get the state machine for the Press system
by the composition of all 15 state machines, which is the
composition of all 7 subsystems andm s6 s7:

𝑆𝑡𝑎𝑡𝑒𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑃𝑟𝑒𝑠𝑠 = ((7⨂
i=1

𝑆𝑢𝑏𝑖) ⊗ 𝑚 𝑠6 𝑠7) (2)

The ultimate manifestation of StateMachine𝑃𝑟𝑒𝑠𝑠 is the
Press system’s Event-B machine.

In fact, “composition of iUML-B state machines” here
is not “composition of Event-B machines” but an operation
similar to the composition of LTSs. In our previous work
[22],we have proven that as long as an iUML-B state machine
only describes a single variable’s change (we refer to this kind
of iUML-B state machine as an “atomic state machine”), we
can easily convert it to its corresponding LTS model (we
call it “atomic LTS”). We have also mapped the composition
of iUML-B state machine to that of LTS. That is, if we

www.manaraa.com

10 Journal of Control Science and Engineering

Table 1: Subsystems of Press system and its corresponding iUML-B state machines.

Subsystem iUML-B state machine Synchronization pattern
Actuator Reactor

Sub1 (B1-controller) start motor button start motor impulse Weak synchronization
Sub2 (B2-controller) stop motor button stop motor impulse Weak synchronization
Sub3 (B3-controller) start clutch button start clutch impulse Weak synchronization
Sub4 (B4-controller) stop clutch button stop clutch impulse Weak synchronization
Sub5 (controller-Motor) motor actuator motor sensor Strong synchronization
Sub6 (controller-Door) door actuator door sensor Strong synchronization
Sub7 (controller-Clutch) clutch actuator clutch sensor Strong synchronization

have multiple atomic state machines S1, S2... S𝑛, and their
corresponding atomic LTS: LTS (S1), LTS(S2). . .LTS(S𝑛), then
we have

𝐿𝑇𝑆(𝑛⨂
i=1

Si) ∼ (‖ni=1𝐿𝑇𝑆 (𝑆𝑖)) (3)

where “‖” represents the composition of LTS and “∼”
represents the bisimulation equivalence relation between two
LTSs.

Therefore, according to expression (3), for the iUML-B
state machines of this paper, we have

𝐿𝑇𝑆 (𝑆𝑡𝑎𝑡𝑒𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠𝑢𝑏1)
∼ (𝐿𝑇𝑆 (𝑠𝑡𝑎𝑟𝑡 𝑚𝑜𝑡𝑜𝑟 𝑏𝑢𝑡𝑡𝑜𝑛) ‖
𝐿𝑇𝑆 (𝑠𝑡𝑎𝑟𝑡 𝑚𝑜𝑡𝑜𝑟 𝑖𝑚𝑢𝑙𝑠𝑒))

(4)

and

LTS (𝑆𝑡𝑎𝑡𝑒𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑃𝑟𝑒𝑠𝑠)
∼ (‖7i=1LTS (𝑆𝑢𝑏𝑖)) ‖ LTS (𝑚 𝑠6 𝑠7) (5)

In this way, we can get the LTS model of an Event-B
model, which is obtained by integrating of many iUML-B
state machines. Further, it allows us to use a variety of model
checking tools to verify the behaviour properties of the Event-
B model.

6. Evaluation

In this section, we compared the development method based
on iUML-B pattern state machine with the development
method based on traditional Event-B design pattern. In
general, using iUML-B state machines to model the synchro-
nization control flow patterns has three benefits: (1) iUML-B
is as easy as UML to learn and can reduce the manual coding
costs; (2) iUML-B state machine can express the control flow
explicitly; (3) iUML-B state machine can be easily converted
to labelled transition system (LTS).

We used the iUML-B pattern state machine to establish
the seven-level refinement model of the mechanical press
controller system step by step, according to the refinement
step that has been described by Abrial [3]. The simulation
results on the Rodin platform show that, at each layer, the

press1 press2 press3 press4 press5 press6 press7press0
0

20

40

60

80

100

120

140

160

variables
invariants
guard

action
Total

Figure 17: Statistics of Press model generated by iUML-B state
machine.

event trace of the model obtained using our method is the
same as that of the corresponding model obtained using
Abrial’s traditional design pattern. The growth trend of these
elements is shown in Figure 17.

We use Abrial’s nongraphical model of the Press system
(http://deploy-eprints.ecs.soton.ac.uk/113/2/ch3 press.zip),
which is a direct hand-coded Event-B model, for comparison
with our work. For comparison, we also present the statistical
data for the mechanical press controller model developed
by the traditional Event-B design pattern. The growth trend
of its elements is shown in Figure 18 (the growth trend of
variables and invariants in the figure is the same, so the two
curves coincide).

From the statistical data, we can observe a phenomenon:
no matter what method is used to model a control-intensive
system, the number of model codes grows fast with the
growth of refinement level. For the traditional Event-B design
pattern method, the total number of variables, invariants,
guards, and actions is 142 when refinement level is 7. For a
method based on the iUML-B pattern state machine, this

http://deploy-eprints.ecs.soton.ac.uk/113/2/ch3_press.zip

www.manaraa.com

Journal of Control Science and Engineering 11

0

20

40

60

80

100

120

140

160

press1 press2 press3 press4 press5 press6 press7press0

variables
invariants
guard

action
Total

Figure 18: Statistics of Abrial’s Press model.

number is 145. From the graphs in Figures 17 and 18, it can
be seen that the growth rate of guards is the fastest, followed
by actions. For more complex multilevel control system, the
slope of these two curves will be greater.

Although the statistics in Figures 17 and 18 are similar, the
guards and actions in Figure 17 are automatically generated
from the iUML-B state machine and the guards and actions
in Figure 18must bemanually coded by themodeller. In other
words, using the iUML-B pattern state machine to model
control-intensive systems, the amount of manual coding we
can save at least is equal to (74 + 49)/142 = 86.6%.

Another benefit of our approach is that the control flow
of the Event-B model becomes visible. Using the iUML-
B state machine, we can express and analyze the event
order of the system model easily. And the larger Event-B
model is decomposed into smaller subsystems, each with its
separated control flow. In this way, the complex multilevel
control problem becomes a simple subsystem modelling
problem. The final Event-B model is a composition of these
subsystems. From the engineering point of view, at the time of
decomposing the system, we also decompose the complexity
ofmodelling problems and distribute this complexity to some
smaller state machines.

Finally, the iUML-B statemachine can be easily converted
to LTS, so that the behaviour properties of the Event-Bmodel
can be analyzed and verified. From the point of view of
behavioural semantic verification, this is a very desirable
advantage.

7. Conclusion and Future Work

In this paper, we use the iUML-B pattern state machine
to model the four synchronization design patterns in the
embedded control system. Then we instantiate the four

iUML-B pattern state machines to get the Event-B model of
a complex, multilayer control system. The simulation results
show that the event trace of the systemmodel obtained using
the iUML-B pattern state machine is the same as that of the
model obtained using the traditional Event-B design pattern.

The advantage of our approach lies in the following
points. First, the process of modelling synchronous control
flowpatterns is visible.The system’s control flow synchroniza-
tion patterns are expressed using the iUML-B state machines.
This makes the system model be understood more easily.
Second, themodelling process of the systembecomes simpler.
Using the traditional approach based on the Event-B design
pattern, the modeller who wants to add a new control flow
needs to find the locations in hundreds or even thousands
of lines of code to insert the guards and actions. However,
using the iUML-B pattern state machine, people only need
to add some transition edges in a state machine to complete
these tasks. Finally, the decomposition and composition of
the subsystems are visible. The system’s control flow model
is decomposed into some iUML-B state machines, and each
pair of iUML-B state machines forms a subsystem. The final
system model is the composition of these iUML-B state
machines.

Event-B is a data-oriented formal modelling language.
Therefore, it cannot guarantee the consistency of behaviour
between the refined model and the abstract model. In the
future, we want to propose an integrated formal method
that can guarantee the consistency of the refined model and
abstract model in both behaviour aspect and data aspect.

Disclosure

Han Peng is a teacher at School of Computer Science, Xi’an
Aeronautical University. Now he is studying for a doctoral
degree at the School of Computer Science, Northwestern
Polytechnical University.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper

Acknowledgments

The authors are very grateful to Professor Colin Snook
and Dr. Thai Son Hoang of the University of Southampton
for their valuable constructive suggestions in this research
work.

References

[1] G. Gigante and D. Pascarella, Formal Methods in Avionic Soft-
ware Certification: The DO-178C Perspective, Springer, Berlin,
Germany, 2012.

[2] F. De Rosa, R. Cesoni, S. Genta, and P. Maggiore, “Failure
rate evaluation method for HW architecture derived from
functional safety standards (ISO 19014, ISO 25119, IEC 61508),”
Reliability Engineering & System Safety, vol. 165, pp. 124–133,
2017.

www.manaraa.com

12 Journal of Control Science and Engineering

[3] J. R. Abrial,Modeling in Event-B: System and Software Engineer-
ing, Cambridge University Press, 2010.

[4] D.Méry andN.K. Singh, “Modeling anAircraftLanding System
in Event-B,” Communications in Computer and Information
Science, vol. 433, pp. 154–159, 2014.

[5] A. Iliasov, E. Troubitsyna, L. Laibinis et al., “Developing mode-
rich satellite software by refinement in Event-B,” Science of
Computer Programming, vol. 78, no. 7, pp. 884–905, 2013.

[6] T. S. Hoang, A. Fürst, and J.-R. Abrial, “Event-B patterns and
their tool support,” Software and Systems Modeling, vol. 12, no.
2, pp. 229–244, 2013.

[7] R. Silva, “Application of Decomposition and Generic Instanti-
ation,” Environmental Modelling Software, vol. 47, pp. 138–147,
2011.

[8] R. Silva and M. Butler, “Supporting reuse of Event-B devel-
opments through generic instantiation,” in Proceedings of the
International Conference on Formal Engineering Methods: For-
mal Methods and Software Engineering, pp. 466–484, 2009.

[9] S. Yeganefard, M. Butler, and A. Rezazadeh, “Evaluation of a
guideline by formalmodelling of cruise control system inEvent-
B,” in Proceedings of the 2nd NASA Formal Methods Symposium,
pp. 182–191, 2010.

[10] S. Yeganefard andM. Butler, “Problem decomposition and sub-
model reconciliation of control systems in Event-B,” in Proceed-
ings of the IEEE 14th International Conference on Information
Reuse and Integration, pp. 528–535, August 2013.

[11] S. Yeganefard and M. Butler, “Structuring functional require-
ments of control systems to facilitate refinement-based formal-
isation,” Electronic Communications of the EASST, vol. 46, 2011.

[12] S. Yeganefard andM. Butler, “Control systems: phenomena and
structuring functional requirement documents,” in Proceedings
of the IEEE 17th International Conference on Engineering of
Complex Computer Systems, pp. 39–48, July 2012.

[13] A. Gondal, M. Poppleton, and M. Butler, “Composing Event-
B specifications—case-study experience,” in Software Composi-
tion, vol. 6708 of Lecture Notes in Computer Science, pp. 100–115,
Springer, Berlin, Germany, 2011.

[14] A. Intana, Formal engineering methodologies for wireless sensor
network development with simulation, University of Southamp-
ton, 2015.

[15] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta,
and L. Voisin, “Rodin: An open toolset for modelling and
reasoning in Event-B,” International Journal on Software Tools
for Technology Transfer, vol. 12, no. 6, pp. 447–466, 2010.

[16] C. Snook andM. Butler, “UML-B: Formal modeling and design
aided by UML,”ACMTransactions on Software Engineering and
Methodology (TOSEM), vol. 15, no. 1, pp. 92–122, 2006.

[17] A. S. Fathabadi, C. Snook, andM. Butler,Applying an integrated
modelling process to run-timemanagement ofmany-core systems,
2014, International Conference on Integrated Formal Methods,
Springer, Cham.

[18] T. S. Hoang, C. Snook, L. Ladenberger, and M. Butler, “Vali-
dating the requirements and design of a hemodialysis machine
using iUML-B, BMotion studio, and co-simulation,” in Proceed-
ings of the International Conference on Abstract State Machines,
Alloy, B, TLA, VDM, and Z, pp. 360–375, 2016.

[19] C. Snook, T. S. Hoang, and M. Butler, “Analysing security
protocols using refinement in iUML-B,” in Proceedings of the
NASA Formal Methods Symposium, pp. 84–98, 2017.

[20] M. Butler, Decomposition Structures for Event-B, Springer,
Berlin, Germany, 2009.

[21] D. L. Chaudhari and O. P. Damani, “Generating hierarchical
state based representation from event-B models,” Electronic
Notes inTheoretical Computer Science, vol. 280, no. 1, pp. 35–46,
2011.

[22] H. Peng, C. Du, L. Rao, and F. Chen, “A LTS approach to
control in event-B,” Scientific Programming, vol. 2018, Article ID
8765186, 11 pages, 2018.

www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.

